第2248章 「反派们」发挥的越好,越能衬托我(1/2)
第2248章 “反派们”发挥的越好,越能衬托我的强大
不得不说。
博尔特的確今年做的可以。
对得起努力博的称呼。
这一枪启动也的確很强。
就是可惜。
他的对手是苏神。
是这个时代。
启动的王者。
布雷克这边,在起跑器上採用的紧凑姿势,本质上是对身体重心进行精確调控。
通过测量发现,其准备姿势下重心投影点距离起跑线约20-25cm。
这一位置能够实现“预加载”效果。
当身体前倾时,股四头肌、臀大肌等伸髖伸膝肌群处於离心收缩状態,如同压缩的弹簧储存弹性势能。根据胡克定律f=kx,肌肉预拉伸程度(x)与弹性回復力(f)成正比,合理的重心前倾角度(约45°-55°)使下肢肌群达到最佳初始张力。
布雷克的確还是比较用脑子。
这一点。
比博尔特要更好点。
也更加的喜欢钻研。
这种关节角度配置使下肢形成高效的“槓桿系统”。以膝关节为例,较小的屈曲角度缩短了阻力臂长度。
以槓桿原理为基础f1xl1=f2xl2。
在肌肉收缩力(f1)不变的情况下,可使蹬地力(f2)显著增大。
就是启动反应。
依然一言难尽。
只有0.185s。
而这已经在布雷克这里不算慢。
布雷克的蹬地动作呈现独特的“斜向发力”特徵。运动捕捉数据显示,其蹬地瞬间垂直力峰值可达体重的5-6倍,水平力峰值达体重的3-4倍,合力方向与地面夹角约35°-40°。
这种发力模式通过以下机制实现高效加速。
他也开始训练越来越科学化。
说明米尔斯也的確兑现了自己的话。
给了他更多的训练关注。
第一步。
克服重力使身体腾空,创造向前加速的时间窗口。
第二步。
直接驱动身体质心前移,符合牛顿第二定律f=ma,可以让较大的水平分力可產生更高加速度。
第三步
35°-40°的夹角在保证水平推进力的同时,避免过度垂直位移导致的能量损耗。
第四步。
股四头肌、臀大肌、小腿三头肌爆发式收缩。
膕绳肌、髂腰肌辅助完成伸髖伸膝动作。
股直肌等通过交互抑制机制放鬆,减少收缩阻力。
布雷克在起跑后四步步內完成从蹲踞到直立的姿势转换,其身体重心轨跡呈现平滑的拋物线特徵。
前四步步长依次递增10%-15%,使重心平稳前移。
躯干角度变化,从45°前倾逐步过渡到85°直立,角速度控制在80-90°/s。
双臂前后摆动幅度达120°,与下肢动作形成反向扭矩平衡。
踝关节跖屈发力启动→2.膝关节伸展推进→3.髖关节伸展完成蹬地。
这种由远及近的关节活动顺序,符合“鞭打效应”原理。如同鞭子抽打时末梢速度最快,可使蹬地力量有效传递至身体重心。
这都说明布雷克今年的重心做得不错。
即便是主要训练200米,但100米也从来没有放下。
心中还是有执念的。
只是现在的100米环境太恶劣,高手太多了,取得不了荣誉,也取得不了相应的收入,只能退而求其次。
但只要有机会,他还是会重新杀回来。
布雷克的天赋当真是可以,要不然当年米尔斯也不会让他主攻百米。
布雷克下肢肌肉的爆发式收缩,本质上是肌小节內肌动蛋白与肌球蛋白横桥循环效率的体现。有实验室研究表明,他的其快肌纤维ii型肌纤维占比达82%,的肌球蛋白atp酶活性比普通运动员高18%-22%。
这使他的atp水解速率加快。
为肌肉收缩提供更快速的能量供应。在起跑蹬地瞬间,横桥结合速率可达每秒5-7次远超普通运动员约3-4次。
这种高频横桥循环產生的张力峰值比常人高30%以上。
更不要说布雷克的神经肌肉系统展现出独特的“钙瞬变”优化——
当他的运动神经元衝动到达时,电压门控钙通道的开放速度比普通运动员快15%。
这可以使肌浆网钙释放通道在0.5ms內快速释放ca,胞浆ca浓度峰值可达10 mol/l,胜过普通运动员约8x10 mol/l。
布雷克的跟腱刚度达150n/mm。
这使其在蹬地时能储存更多弹性势能。
根据机械能守恆定律,蹬地阶段肌肉收缩產生的能量(e)一部分转化为动能(e=mv)。
另一部分储存为跟腱、筋膜的弹性势能(e=kx)。布雷克的弹性势能回收率高达65%,压过普通运动员约50%,这种“被动弹性助力”使蹬地效率提升显著。
有了这些,他才可以做到——
起跑过程中,髖关节、膝关节、踝关节的扭矩输出呈现严格的时序性。
0-0.1s:踝关节跖屈扭矩率先达到峰值(350n·m),启动“鞭打效应”。
0.1-0.2s:膝关节伸膝扭矩达峰值(480n·m),形成主要推进力。
0.2-0.3s:髖关节伸髖扭矩达峰值(520n·m),完成重心转移。
这种扭矩梯度,髖关节>膝关节>踝关节与人体下肢惯性矩分布,髖关节惯性矩最大,相匹配,符合“由大关节到小关节”的能量传递原则,使机械能传递效率提升至89%。
但是这是优势,还有一些还需要调整的劣势。
比如布雷克起跑时膝关节屈曲角度90°-100°显著小於常规姿势,虽提升了股四头肌收缩效率,但会导致髕股关节压力指数增加25%-30%。
在膝关节生物力学模型下,当人体屈曲角度小於100°时,髕骨承受的剪切力可达体重的8-10倍。
长期训练可能引发髕骨软化症或髕腱炎。
其踝关节跖屈角度80°-85°虽增强了小腿三头肌发力,但跟腱承受的张力峰值可达自身最大负荷的180%!
超过跟腱安全应力閾值150%。
虽然说运动员拥有更强大的身体和身体抗压能力。
但是长期这样做,也同样会存在问题。
你需要不停的调整,不停的加强,不停的弥补弱项和短板。
不然最严重的。
可能……
存在跟腱断裂的潜在风险。
其重心投影点距起跑线20-25cm的“预加载”姿势,虽增加了肌肉弹性势能储备,但过度前倾躯干角度45°-55°,容易导致脊柱胸腰段承受异常屈曲载荷,腰椎间盘压力较直立姿势增加40%。
运动能量代谢分析显示,该姿势下静息耗氧量比常规姿势高15%,可能导致起跑前的微小能量储备消耗,影响后续加速阶段的能量供给。
蹬地合力角度35°-40°虽兼顾水平推进与垂直腾空,但三维测力台数据显示,其左右下肢蹬地力对称性误差可达8%-10%,高於优秀运动员平均水平。
但是……
这种不对称性可能引发骨盆侧倾代偿。
导致起跑后轨跡偏移。
尤其在塑胶跑道温度差异,左右侧温差>2c时,摩擦係数变化会放大这种偏差。
如果增加这个时代不存在引入短跑训练的眼动追踪就会发现,布雷克在重大比赛中,如奥运会,他的视觉注视稳定性,注视点漂移幅度,比训练时增加35%。
这种注意力分散会使起跑后前3步的步长变异係数从5.2%升至8.7%。
导致重心轨跡波动增大,影响加速连贯性。
其技术依赖的“斜向发力”模式需要下肢三关节在0.15秒內完成从离心到向心收缩的快速转换,这种“爆发-缓衝”循环对肌肉肌腱复合体的损伤閾值要求极高。
普通运动员採用相同训练方案时,应力性骨折发生率较传统起跑训练高2.3倍,提示该技术对肌骨系统的结构適应性有严苛要求。
所以,即便是布雷克。
问题其实也不少。
只是现在他这边看不太出来。
牙买加的团队科研体系也有限制。
虽然你大可以说米尔斯这边已经是牙买加的最好。
可这在未来的科技水平看起来还是相当的普通。
对不起他这个级別的运动员。
所以布雷克上一世才会出现那些伤病。
完全是因为,以他的科研医疗条件,很难提前预防这些问题。
不然绝大部分都可以避免。
不过布雷克现在想到了一个新路子。
那就是他给苏神进行付费諮询。
是朋友还明算帐,而且给的价格也不算低,苏神的確也没有太私藏。
就给他说了一些自己的改进意见。
这才有了布雷克的现在。
在某些方面。
尤其是运动科研方面,以及医疗团队方面。
不能不说。
布雷克还是更加的相信。
苏神这边。
即便是人家这属於对手。
他也愿意更加相信。
倒不是觉得米尔斯的教学水平不行。
只是单纯觉得术业有专攻。
苏神既然是这个行业的青年领袖。
那么就能够看到米尔斯看不到的东西,懂得米尔斯不懂的方案。
尤其是自己之前觉得有些不舒服的地方。
被苏神的几次諮询,几乎完全消灭。
在名气和事实的双重加持下。
布雷克没办法让自己不相信他。
比如给布雷克送了一台装备,苏神实验室开发可调节角度的智能起跑器。
这个起跑器可以通过压力传感器实时反馈蹬地力矢量,辅助运动员动態调整姿势。
当然布雷克很上道,收到之后立刻打钱。
不管苏神要不要,他就是这么明算帐。
这反倒是搞的苏神有些不好意思。
还附带给他搞了一个膝关节弹性支撑装置。
这个装置可以在起跑瞬间提供30-50n的反向载荷。
等於是变相降低髕股关节压力。
並且他还建议布雷克採购了一批自己的运动传感设备后,设定跟腱张力预警,建立一个基於肌骨模型的个体化负荷监测简单小系统。
这对於拥有两世经验以及未来知识的苏神。
或许就是举手之劳。
但是这对於布雷克来讲。
却把米尔斯以及这边的科研医疗团队很多年都没有搞定的问题。
三言两语就解决。
在现实之下,他不得不更加信任苏神这边。
而且他也捨得给自己的身体投入费。
本章未完,点击下一页继续阅读。